

Search Versus Machine Learning at Predicting Curling Outcomes

Nicholas Westbury, Dr. Michael Bowling Computer Curling Research Group, University of Alberta

What is Curling?

Curling is a sport where two teams alternate throwing 16 stones across a sheet of ice towards target circles, called the house. Score is calculated at each end of a period, called an end, by the number of stones closest to the center.

Figure 1. Last position of an end, yellow scores +2.

Problem Description

Pertinent subproblems to this project are:

- Evaluating states accurately and quickly
- Predicting human performance
- Comparing search and machine learning techniques on the above tasks

Input	Output
	52.9% +2 for red 58.9% win for red
Score 4-2 Red's Turn	Predicted Score 4-4
	45.9% -1 for red 41.9% win for red
Score 2-2 Red's Turn	Predicted Score 3-2

Figure 2. From a state, winning probabilities and predicted score differences are outputted.

Comparison of Approaches

	Search Bot (Richardson)	Logistic Predictor
Method	Simulation	Pattern Recognition
Requires training data	No	Yes
Computation Time	High	Lower (after training)
State Universality	Yes	Best with states similar to training
Probabilities	Yes (sampling)	Yes (directly)

Figure 3. Richardson and logistic perform the same task radically differently.

Algorithm Descriptions

Search Bot (Richardson)

Plays out a state to the end (100x)

Supervised Predictor (Logistic, Linear)

Olympic logs are labelled with W/L and score differences

36 features are computed:

- The immediate score difference
- Center draw area
- # and x,y of guards

Predictions are combined for all states

For all data

Prediction Results

Figure 4. Predicting binary end win/loss

Comparison of End Outcome Predictors

Figure 5. Linear regression always outperforms logistic at the score prediction task.

Comparison of End Outcome Predictors Predicting Richardson Games

Figure 6. Richardson can predict his own games better, at least for the last two shots.

State Evaluation Results

Logistic regression predicts the probability of each end score difference. This can be used directly (fig. 7) or converted to a win percentage (fig. 8).

Figure 7. The evolution of score difference over time for an individual game.

Figure 8. Logistic state evaluation yields a significant (α=.05) 7% gain over rollout evaluation!

Conclusion

Linear and Logistic regressions do not notably over or under preform compared to Richardson in the prediction task. On the other hand, logistic improves state evaluation.

Acknowledgments

Thank you to Micheal Bowling for supervising the supervised learning project, NSERC CRSNG for their support of undergraduate research, and the curling group for their help!

